### **<u>UNIT 1</u> : NUMBER SEQUENCES**

## Learning Objectives

By the end of this chapter, you should be able to

- Recognise and use Fibonacci sequences
- Complete sequences in ordered pairs

General Sequences

#### Worked Examples: Complete the following sequences below

| (a) | 2, 5, 8,,                                        | (b) | 10, 8, 6, ,                                      |
|-----|--------------------------------------------------|-----|--------------------------------------------------|
|     | Solution:                                        |     | Solution:                                        |
|     | Next two terms: 11 and 14                        |     | Next two terms: 4 and 2                          |
|     | [Add <i>3</i> each time]                         |     | [Subtract 2 each time]                           |
| (c) | 4, 10, 16,,                                      | (d) | 20, 15, 10, ,                                    |
|     | Solution:                                        |     | Solution:                                        |
|     | Next two terms: 22 and 28                        |     | Next two terms: 5 and 0                          |
|     | [Add 6 each time]                                |     | [Subtract 5 each time]                           |
| (e) | 1, 11, 21,,                                      | (f) | -5, -12, -19,,                                   |
|     | Solution:                                        |     | Solution:                                        |
|     | Next two terms: 31 and 41                        |     | Next two terms: $-26$ and $-33$                  |
|     | [Add 10 each time]                               |     | [Subtract 7 each time]                           |
| (g) | 1, 2, 4,,                                        | (h) | -3, -9, -27,,                                    |
|     | Solution:                                        |     | Solution:                                        |
|     | Next two terms: 8 and 16                         |     | Next two terms: $-81$ and $-243$                 |
|     | [Multiply by 2 each time]                        |     | [Multiply by 3 each time]                        |
| (i) | -4, 8, -16,,                                     | (j) | 1.5, 2.0, 2.5,,                                  |
|     | Solution:                                        |     | Solution:                                        |
|     | Next two terms: $32 \text{ and } -64$            |     | Next two terms: 3.0 and 3.5                      |
|     | [Multiply by $-2$ each time]                     |     | [Add 0.5 each time]                              |
| (k) | -128, 64, -32,,                                  | (1) | $1, \frac{1}{2}, \frac{1}{4}, \_$ ,              |
|     | Solution:                                        |     | Solution:                                        |
|     | Next two terms: 16 and $-8$                      |     | 1 1                                              |
|     | [Divide by $-2$ each time]                       |     | Next two terms: $\frac{1}{8}$ and $\frac{1}{16}$ |
|     |                                                  |     | [Divide by 2 each time]                          |
| (m) | 9, -3, 1,,                                       | (n) | 1, 4, 9,,                                        |
|     | Solution:                                        |     | Solution:                                        |
|     | Next two terms: $-\frac{1}{2}$ and $\frac{1}{2}$ |     | Next two terms: 16 and 25                        |
|     | 3 9                                              |     | [Square the positive integers]                   |
|     | [Divide by $-3$ each time]                       |     |                                                  |

|                                                                 | (b)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4, 8, 12,,                                                      |           | 15, 10, 5, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                 | (d)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7, 10, 13,,                                                     |           | 1, 3, 9,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 | (f)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 88, 44, 22,,                                                    |           | 3, -6, 12,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                 | (h)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2, 6, 18,,                                                      |           | 1, -2, 4,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 | (j)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50, 40, 30, ,                                                   |           | 2, 4, 8,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 | (1)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1, 8, 27,,                                                      |           | 5.5, 5.0, 4.5, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 | (n)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.1, -0.2, 0.3,,                                                |           | 0.9, 1.8, 2.7, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 | (p)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 3 5                                                           |           | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2,2,2,2,,                                                       |           | 3'6'12''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | (r)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $1, \frac{3}{4}, \frac{1}{2}, \ldots, \ldots, \ldots$           |           | $\frac{5}{4}$ , 1, $\frac{3}{4}$ ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                 | (t)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7 3                                                             | (0)       | 2 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $2, \frac{7}{4}, \frac{3}{2}, \dots, \frac{7}{2}, \dots$        |           | $\frac{2}{6}, \frac{4}{5}, \frac{6}{4}, \frac{1}{2}, \frac$ |
|                                                                 | (v)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $2\frac{1}{3}, 3\frac{1}{3}, 4\frac{1}{3}, \ldots, \ldots$      |           | $1\frac{1}{2}, 3, 4\frac{1}{2}, \ldots, \ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                 | (x)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $5, 2\frac{1}{2}, \frac{5}{2}, \dots, $                         |           | $8\frac{1}{2}, 4\frac{1}{2}, \frac{1}{2}, \dots, \dots, \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2 4                                                             |           | 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | (z)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $10\frac{1}{4}, 5\frac{1}{4}, \frac{1}{4}, \dots, \dots, \dots$ |           | $-1\frac{1}{4}, 1\frac{3}{4}, 4\frac{3}{4}, \ldots, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | 4, 8, 12, | 4, 8, 12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# Exercise 1.1: Complete the following sequences

## The Fibonacci Sequence

| The Fibonacci sequence is a series of numbers in which each number (after the first two) is the sum |                                                |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|
| of the two preceding ones. The sequence typically starts                                            | with 1, The first few terms of the Fibonacci   |  |  |  |  |  |  |
| sequence are: 1, 1, 2, 3, 5, 8, 13, 21,                                                             |                                                |  |  |  |  |  |  |
| Worked Examples:                                                                                    |                                                |  |  |  |  |  |  |
| 1. Complete the following Fibonacci-like sequences belo                                             | ow:                                            |  |  |  |  |  |  |
| (a) $0, 1, 1, 2, 3$ , (b)                                                                           | 2, 3, 5, 8, 13,                                |  |  |  |  |  |  |
| Solution:                                                                                           | Solution:                                      |  |  |  |  |  |  |
| Next two terms: 5 and 8                                                                             | Next two terms: 21 and 34                      |  |  |  |  |  |  |
|                                                                                                     |                                                |  |  |  |  |  |  |
| (c) 5, 8, 13, 21, 34, (d)                                                                           | 1, 4, 5, 9, 14,                                |  |  |  |  |  |  |
| Solution:                                                                                           | Solution:                                      |  |  |  |  |  |  |
| Next two terms: 55 and 89                                                                           | Next two terms: 23 and 37                      |  |  |  |  |  |  |
|                                                                                                     |                                                |  |  |  |  |  |  |
| (e) 3, 6, 9, 15, 24, (f)                                                                            | 2, 4, 6, 10, 16,                               |  |  |  |  |  |  |
| Solution:                                                                                           | Solution:                                      |  |  |  |  |  |  |
| Next two terms: 39 and 63                                                                           | Next two terms: 26 and 42                      |  |  |  |  |  |  |
|                                                                                                     |                                                |  |  |  |  |  |  |
| (g) 5, 11, 16, 27, 43, (h)                                                                          | 7, 11, 18, 29, 47,                             |  |  |  |  |  |  |
| Solution:                                                                                           | Solution:                                      |  |  |  |  |  |  |
| Next two terms: 70 and 113                                                                          | Next two terms: 76 and 123                     |  |  |  |  |  |  |
|                                                                                                     |                                                |  |  |  |  |  |  |
| 2. If the third and fourth terms of a Fibonacci sequence a                                          | re 15 and 25 respectively, find the first five |  |  |  |  |  |  |
| terms of the sequence.                                                                              |                                                |  |  |  |  |  |  |
| Solution:                                                                                           |                                                |  |  |  |  |  |  |
| $T_3 = 15, T_4 = 25$                                                                                |                                                |  |  |  |  |  |  |
| $T_2 = T_4 - T_3 = 25 - 15 = 10, T_1 = T_3 - T_2 = 15 - 1$                                          | 0 = 5                                          |  |  |  |  |  |  |
| $T_5 = T_3 + T_4 = 15 + 25 = 40$                                                                    |                                                |  |  |  |  |  |  |
| Hence, the first 5 terms are 5, 10, 15, 25, 40.                                                     |                                                |  |  |  |  |  |  |
| 3. If the fifth and sixth terms of a Fibonacci sequence are                                         | e 55 and 90 respectively, find the first six   |  |  |  |  |  |  |
| terms of the sequence.                                                                              |                                                |  |  |  |  |  |  |
| Solution:                                                                                           |                                                |  |  |  |  |  |  |
| $T_5 = 55, T_6 = 90$                                                                                |                                                |  |  |  |  |  |  |
| $T_4 = T_6 - T_5 = 90 - 55 = 35, \ T_3 = T_5 - T_4 = 55 - 3$                                        | 5 = 20                                         |  |  |  |  |  |  |
| $T_2 = T_4 - T_3 = 35 - 20 = 15$ , $T_1 = T_3 - T_2 = 20$                                           | - 15 = 5                                       |  |  |  |  |  |  |
| Hence, the first 5 terms are 5, 15, 20, 35, 55, 90.                                                 |                                                |  |  |  |  |  |  |



Exercise 1.2: Complete the following Fibonacci-like sequences

<u>Exercise 1.4</u>: If the third and fifth terms of a Fibonacci sequence are 60 and 160 respectively, find the first seven terms of the sequence.

Exercise 1.3: If the second and fourth terms of a Fibonacci sequence are 18 and 47 respectively, find the first six terms of the sequence.

# Sequence of Ordered Pairs

| A se | A sequence of ordered pairs is a list of elements where each element is a pair of values arranged in a                                      |       |                                                                                                                                |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| spec | specific order. In mathematical terms, an ordered pair is represented as $(x, y)$ , where x is the first                                    |       |                                                                                                                                |  |  |  |  |
| elen | tent and $y$ is the second element.                                                                                                         |       |                                                                                                                                |  |  |  |  |
| A fi | nite sequence of ordered pairs: (1, 2), (3, 4), (5,                                                                                         | 6).   |                                                                                                                                |  |  |  |  |
| An i | nfinite sequence of ordered pairs: (1, 2), (2, 4),                                                                                          | (3,6) | ),                                                                                                                             |  |  |  |  |
| Wor  | ked Examples:                                                                                                                               |       |                                                                                                                                |  |  |  |  |
| 1. C | omplete the following sequence of ordered pair                                                                                              | s.    |                                                                                                                                |  |  |  |  |
| (a)  | (1,2), (2,4), (3,6),,                                                                                                                       | (b)   | (3,9), (4,16), (5,25),,                                                                                                        |  |  |  |  |
|      | Solution:                                                                                                                                   |       | Solution:                                                                                                                      |  |  |  |  |
|      | The first element increases by 1 each time.                                                                                                 |       | The first element increases by 1 each time.                                                                                    |  |  |  |  |
|      | The second element is twice the first element                                                                                               |       | The second element is the square of the                                                                                        |  |  |  |  |
|      | The next two terms are (4, 8) and (5, 10)                                                                                                   |       | first element.                                                                                                                 |  |  |  |  |
|      |                                                                                                                                             |       | The next two terms are (6, 36) and (7, 49)                                                                                     |  |  |  |  |
| (c)  | (1, -3), (3, -9), (5, -15),,                                                                                                                | (d)   | (1,1),(2,8),(3,27),                                                                                                            |  |  |  |  |
|      |                                                                                                                                             |       | Solution:                                                                                                                      |  |  |  |  |
|      | Solution:                                                                                                                                   |       | The first element increases by 3 each time.                                                                                    |  |  |  |  |
|      | The first element increases by 2 each time.                                                                                                 |       | The second element is the cube of the first                                                                                    |  |  |  |  |
|      | The second element is thrice the negative                                                                                                   |       | element                                                                                                                        |  |  |  |  |
|      | value of the first element                                                                                                                  |       | The next two terms are (4, 64) and                                                                                             |  |  |  |  |
|      | The next two terms are $(7, -21)$ and                                                                                                       |       | (5,125)                                                                                                                        |  |  |  |  |
|      | (9, –27).                                                                                                                                   |       |                                                                                                                                |  |  |  |  |
| (e)  | $\left(\frac{1}{2},\frac{1}{4}\right), \left(\frac{3}{2},\frac{9}{4}\right), \left(\frac{5}{2},\frac{25}{4}\right), \ldots, \ldots, \ldots$ | (f)   | $\left(1\frac{1}{2},3\frac{1}{2}\right),\left(2\frac{1}{2},4\frac{1}{2}\right),\left(3\frac{1}{2},5\frac{1}{2}\right),\ldots,$ |  |  |  |  |
|      | Solution:                                                                                                                                   |       | ·                                                                                                                              |  |  |  |  |
|      | The first element increases by 1 each time.                                                                                                 |       | Solution:                                                                                                                      |  |  |  |  |
|      | The second element is the square of the first                                                                                               |       | The first element increases by 1 each time.                                                                                    |  |  |  |  |
|      | element                                                                                                                                     |       | The second element follows the pattern                                                                                         |  |  |  |  |
|      | The next two terms are $\left(\frac{7}{2}, \frac{49}{4}\right)$ and $\left(\frac{9}{2}, \frac{81}{4}\right)$ .                              |       | first element × (next whole number) + $\frac{1}{4}$                                                                            |  |  |  |  |
|      |                                                                                                                                             |       | The next two terms are $\left(4\frac{1}{2}, 6\frac{1}{2}\right)$ and                                                           |  |  |  |  |
|      |                                                                                                                                             |       | $\left(5\frac{1}{2},7\frac{1}{2}\right).$                                                                                      |  |  |  |  |

| (a)   | (1, 2) $(2, 4)$ $(2, 6)$                                                                                                                                      | (b)     |                                                         |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------|--|--|--|--|--|
|       | (1, 2), (2, 4), (3, 0),,                                                                                                                                      |         | (1.3, 5), (2.3, 5), (3.3, 7),,                          |  |  |  |  |  |
| (c)   |                                                                                                                                                               | (d)     |                                                         |  |  |  |  |  |
|       | (2, 1), (4, 2), (6, 3),,                                                                                                                                      |         | $(1\frac{1}{2},2),(2\frac{1}{2},4),(3\frac{1}{2},6),$ , |  |  |  |  |  |
|       |                                                                                                                                                               |         | · · · ·                                                 |  |  |  |  |  |
| (e)   |                                                                                                                                                               | (f)     |                                                         |  |  |  |  |  |
|       | $\left(\frac{1}{2}, 0.5\right), \left(\frac{3}{2}, 1.5\right), \left(\frac{5}{2}, 2.5\right), \_$                                                             |         | (2,-4), (4,-16), (6,-36),,                              |  |  |  |  |  |
|       | ·                                                                                                                                                             |         | ·                                                       |  |  |  |  |  |
| (g)   |                                                                                                                                                               | (h)     |                                                         |  |  |  |  |  |
|       | (-3,9), (-1,8), (1,7),,                                                                                                                                       |         | (-1, 1), (-0.5, 0.5), (0, 0),,                          |  |  |  |  |  |
| Exerc | ise 1.6. Complete the missing terms in the foll                                                                                                               | owing   | sequence of ordered pairs                               |  |  |  |  |  |
| (a)   | <u>ise r.e</u> . complete the missing terms in the for                                                                                                        | owing   | sequence of ordered pairs.                              |  |  |  |  |  |
|       | (1,3), (2,), (, 9), (4,12) , (5, _                                                                                                                            |         | _).                                                     |  |  |  |  |  |
| (b)   |                                                                                                                                                               |         |                                                         |  |  |  |  |  |
|       | (1.0, 0.5), (, 1), (3.0,), ()                                                                                                                                 | _, 2.0) | ), (5.0, 2.5).                                          |  |  |  |  |  |
| (c)   |                                                                                                                                                               |         |                                                         |  |  |  |  |  |
|       | (, -2), (0, -1), (, 0), (2,                                                                                                                                   | _),(3   | 3,2).                                                   |  |  |  |  |  |
| (d)   |                                                                                                                                                               |         |                                                         |  |  |  |  |  |
|       | $\left(1\frac{1}{2},3\right),\left(2\frac{1}{2},\ldots,3\right),(\ldots,7),\left(4\frac{1}{2},9\right),(\ldots,11)$                                           |         |                                                         |  |  |  |  |  |
| (e)   | $\left(\frac{1}{3},\frac{1}{9}\right),\left(\frac{2}{3},\ldots\right),\left(\ldots,1\right),\left(\frac{4}{3},\ldots\right),\left(\ldots,\frac{25}{9}\right)$ |         |                                                         |  |  |  |  |  |
| (f)   |                                                                                                                                                               |         |                                                         |  |  |  |  |  |
|       | (-4, 16), (, 9), (-2,), (0,                                                                                                                                   | ), (    | ,0)                                                     |  |  |  |  |  |
| (g)   |                                                                                                                                                               | `       |                                                         |  |  |  |  |  |
| (1.)  | (1, -2), (2, -1), (3,), (, 1), (5)                                                                                                                            | o,2).   |                                                         |  |  |  |  |  |
| (h)   | (2 A) ( (1 ) (A ) ) ((1 ) ) (0 )                                                                                                                              |         |                                                         |  |  |  |  |  |
| (i)   | (2, 4), (, 0), (4,), (0, 12) , (8, _                                                                                                                          |         | _).                                                     |  |  |  |  |  |
| (1)   | (0.5, 0.25), (1.0,), (, 2.25), (2.                                                                                                                            | 0,      | ) , (2.5, 6.25) .                                       |  |  |  |  |  |
| (j)   |                                                                                                                                                               |         |                                                         |  |  |  |  |  |
|       | (3.0, 9.0), (2.5,), (2.0, 4.0), (,                                                                                                                            | 2.25)   | , (1.0,) .                                              |  |  |  |  |  |

Exercise 1.5: Write down the next two terms in each of the following sequences of ordered pairs.

### <u>UNIT 2</u> : INDICES

#### Learning Objectives

By the end of this chapter, you should be able to

- Identify negative powers:  $a^{-n} = \frac{1}{a^n}$  and  $\frac{1}{a^{-n}} = a^n$ ,  $n \in \mathbb{Z}^+$ .
- Recognise powers of  $\frac{1}{2}$  and  $\frac{1}{3}$  as square root and cube root respectively.
- Work with indices in the form  $\left(\frac{a}{b}\right)^n$  and  $(ab)^n$  where  $n \ge 0$  and  $a, b \in \mathbb{Z}^+$
- Solve problems involving unit fractional indices in the form  $\frac{1}{n}$  where  $p \in \mathbb{Z}^+$ .
- Solve problems involving perfect squares, square roots, cubes and cube roots.

#### Negative Indices

#### **Negative Indices**

When attempting questions on indices, some answers will lead to a **negative power**. The answers need to be **expressed as positive powers only**. In order to do so, the following formulae are used:

$$a^{-n} = \frac{1}{a^n}$$
$$\frac{1}{a^{-n}} = a^n$$

Notes: In the above formulae:

(i)  $a \neq 0$ ,

(ii)  $a^{-n}$  is called the reciprocal of  $a^n$ .

For examples: (Expressing as positive powers)

| (a) $a^{-1} = \frac{1}{a^3}$ , | (b) $y^{-2} = \frac{1}{y^2}$            | (c) $3x^{-3} = \frac{3}{x^3}$            |
|--------------------------------|-----------------------------------------|------------------------------------------|
| (d) $\frac{1}{y^{-5}} = y^5$   | (e) $\frac{1}{2a^{-8}} = \frac{a^8}{2}$ | (f) $\frac{3}{4y^{-5}} = \frac{3y^5}{4}$ |

Exercise 2.1: Express the following in terms of positive powers

| (a) | x <sup>-2</sup> | (b) | $y^{-6}$  | (c) | <i>c</i> <sup>-8</sup> |
|-----|-----------------|-----|-----------|-----|------------------------|
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
| (d) | $5a^{-7}$       | (e) | $8e^{-9}$ | (f) | $12r^{-5}$             |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |
|     |                 |     |           |     |                        |

| (a)                                                     | $\frac{1}{w^{-4}}$                                                                                                      | (b) | $\frac{1}{m^{-11}}$ | (c) | $\frac{1}{5n^{-6}}$   |  |  |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|---------------------|-----|-----------------------|--|--|--|
|                                                         | 1                                                                                                                       |     | 7                   | (0) | 6                     |  |  |  |
| (d)                                                     | $\frac{1}{8p^{-12}}$                                                                                                    | (e) | $\frac{7}{9q^{-8}}$ | (f) | $\frac{6}{13r^{-10}}$ |  |  |  |
|                                                         |                                                                                                                         |     |                     |     |                       |  |  |  |
|                                                         |                                                                                                                         |     |                     |     |                       |  |  |  |
| More Examples: ( <i>Expressing as negative powers</i> ) |                                                                                                                         |     |                     |     |                       |  |  |  |
| (a)                                                     | (a) $b^2 = \frac{1}{b^{-2}}$ , 	(b) $\frac{1}{v^3} = y^{-3}$ (c) $\frac{5}{x^6} = 5x^{-6}$                              |     |                     |     |                       |  |  |  |
| (d)                                                     | (d) $\frac{1}{3a^4} = \frac{a^{-4}}{3}$ (e) $\frac{2}{7x^5} = \frac{2x^{-5}}{7}$ (f) $\frac{8}{a^3b^6} = 8a^{-3}b^{-6}$ |     |                     |     |                       |  |  |  |

Exercise 2.2: Express the following in terms of **positive** powers

| $\mathbf{E}_{1}$                        | <b>4 ·</b> · · · · <b>· ·</b> · · · · · · · · · |
|-----------------------------------------|-------------------------------------------------|
| Exercise $7.5$ Express the following in | terms of <b>negative</b> nowers                 |
| $\Delta A = 2.5$                        |                                                 |

| (a) | <i>c</i> <sup>3</sup> | (b) | $\frac{1}{m^4}$  | (c) | $\frac{9}{y^5}$       |
|-----|-----------------------|-----|------------------|-----|-----------------------|
| (d) | $\frac{1}{2r^9}$      | (e) | $\frac{2}{5s^6}$ | (f) | $\frac{4}{x^{10}y^7}$ |
|     |                       |     |                  |     |                       |

| More Examples: Evaluate                      |                                              |                                                           |
|----------------------------------------------|----------------------------------------------|-----------------------------------------------------------|
| (a) $2^{-1} = \frac{1}{2^1} = \frac{1}{2}$ , | (b) $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ , | (c) $5^{-3} = \frac{1}{5^3} = \frac{1}{125}$              |
| (d) $\frac{1}{2^{-3}} = 2^3 = 8$             | (e) $\frac{1}{3^{-4}} = 3^4 = 81$            | (f) $\frac{2}{4^{-3}} = 2 \times 4^3 = 2 \times 64 = 128$ |

Exercise 2.4: Evaluate

| (a) | 4-1                | (b) | 7-1                | (c) | 5 <sup>-2</sup>    |
|-----|--------------------|-----|--------------------|-----|--------------------|
| (d) | 6 <sup>-2</sup>    | (e) | 2 <sup>-3</sup>    | (f) | 3-3                |
| (g) | $\frac{1}{4^{-3}}$ | (h) | $\frac{1}{6^{-3}}$ | (i) | $\frac{1}{2^{-4}}$ |
| (j) | $\frac{1}{5^{-4}}$ | (k) | $\frac{3}{4^{-2}}$ | (1) | $\frac{5}{3^{-3}}$ |

Indices of the form  $(ab)^n$ 

| For $n \ge 0$ and $a, b \in \mathbb{Z}^+$ , |                                                |                                         |
|---------------------------------------------|------------------------------------------------|-----------------------------------------|
|                                             | $(ab)^n = (a \times b)^n = a^n \times b^n = a$ | $^{n}b^{n}$                             |
| For examples:                               |                                                |                                         |
| (a) $(mn)^4 = m^4 n^4$ ,                    | (b) $(a^3b)^3 = a^8b^3$                        | (c) $(x^2y^5)^2 = x^4y^{10}$            |
| (d) $(3b)^4 = 3^4b^4 = 81b^4$               | (e) $(2x^2y^3)^5 = 2^5x^{10}y^{15}$            | (f) $4(8a)^2 = 4 \times 64a^2 = 256a^2$ |
|                                             | $= 32x^{10}y^{15}$                             |                                         |

Exercise 2.5: Simplify

| Biller | <u>2156 2.5</u> : Dimpiny                                    |     |                                                              |     |                             |
|--------|--------------------------------------------------------------|-----|--------------------------------------------------------------|-----|-----------------------------|
| (a)    | (pq) <sup>3</sup>                                            | (b) | (abc) <sup>2</sup>                                           | (c) | $(x^2y^3)^2$                |
| (d)    | ( <i>m</i> <sup>3</sup> <i>n</i> <sup>4</sup> ) <sup>2</sup> | (e) | ( <i>a</i> <sup>3</sup> <i>b</i> <sup>2</sup> ) <sup>2</sup> | (f) | $(p^2q^4)^3$                |
| (g)    | $(4y)^3$                                                     | (h) | (5 <i>c</i> ) <sup>2</sup>                                   | (i) | $(3x^2z)^4$                 |
| (j)    | $(5a^2b^3)^2$                                                | (k) | 3(2 <i>x</i> ) <sup>3</sup>                                  | (1) | 2(5 <i>y</i> ) <sup>2</sup> |



Exercise 2.6: Simplify and evaluate where possible



## Fractional Indices

| A <u>fractional index number</u> consists of a base and a fractional power. Some examples are                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| $4^{\frac{1}{2}}, 8^{\frac{1}{3}}, 16^{\frac{3}{2}}, 125^{\frac{1}{3}}, \dots$                                                                 |
| In general,                                                                                                                                    |
| (i) $a^{\frac{1}{n}}$ is called the <i>nth</i> root of <i>a</i> and $a^{\frac{1}{n}} = \sqrt[n]{a}$                                            |
| For examples:                                                                                                                                  |
| $a^{\frac{1}{2}} = \sqrt{a}$ (also called as the square root of <i>a</i> )                                                                     |
| $a^{\frac{1}{3}} = \sqrt[3]{a}$ (also called as the cube root of <i>a</i> )                                                                    |
| $a^{\frac{1}{4}} = \sqrt[4]{a}$ (also called as the fourth root of <i>a</i> )                                                                  |
| $a^{\frac{1}{5}} = \sqrt[5]{a}$ (also called as the fifth root of $a$ )                                                                        |
| (ii) $a^{\frac{m}{n}} = (a^m)^{\frac{1}{n}} = (a^{\frac{1}{n}})^m$ is called the <i>nth</i> root of <i>a</i> raised to the power of <i>m</i> . |
| For examples:                                                                                                                                  |
| $a^{\frac{3}{2}} = (a^3)^{\frac{1}{2}} = \sqrt{a^3}$                                                                                           |
| $a^{\frac{3}{4}} = (a^3)^{\frac{1}{4}} = \sqrt[4]{a^3}$                                                                                        |
| $a^{\frac{2}{5}} = (a^2)^{\frac{1}{5}} = \sqrt[5]{a^2}$                                                                                        |
| Some further examples:                                                                                                                         |
| (i) $9^{\frac{1}{2}} = (3^2)^{\frac{1}{2}} = 3^{2 \times \frac{1}{2}} = 3^1 = 3$ or $9^{\frac{1}{2}} = \sqrt{9} = 3$                           |
| (ii) $8^{\frac{1}{3}} = (2^3)^{\frac{1}{3}} = 2^{3\times\frac{1}{3}} = 2^1 = 2$ or $8^{\frac{1}{3}} = \sqrt[3]{8} = 2$                         |
| (iii) $16^{\frac{1}{4}} = (2^4)^{\frac{1}{4}} = 2^{4 \times \frac{1}{4}} = 2^1 = 2$ or $16^{\frac{1}{4}} = \sqrt[4]{16} = 2$                   |
| (iv) $25^{0.5} = 25^{\frac{1}{2}} = (5^2)^{\frac{1}{2}} = 5^{2 \times \frac{1}{2}} = 5^1 = 5$                                                  |
| (v) $8^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \times \frac{2}{3}} = 2^2 = 4$                                                               |
| (vi) $16^{\frac{3}{2}} = (4^2)^{\frac{3}{2}} = 4^{2 \times \frac{3}{2}} = 4^3 = 64$                                                            |

### Exercise 2.7: Evaluate

| (a) $8^{\frac{1}{3}}$   | (b) $9^{\frac{1}{2}}$  | (c) $64^{\frac{1}{2}}$ |
|-------------------------|------------------------|------------------------|
|                         |                        |                        |
|                         |                        |                        |
|                         |                        |                        |
|                         |                        |                        |
|                         |                        |                        |
| (d) $125^{\frac{1}{3}}$ | (e) $27^{\frac{2}{3}}$ | (f) $49^{\frac{3}{2}}$ |
| (d) $125^{\frac{1}{3}}$ | (e) $27^{\frac{2}{3}}$ | (f) $49^{\frac{3}{2}}$ |
| (d) $125^{\frac{1}{3}}$ | (e) $27^{\frac{2}{3}}$ | (f) $49^{\frac{3}{2}}$ |
| (d) $125^{\frac{1}{3}}$ | (e) $27^{\frac{2}{3}}$ | (f) $49^{\frac{3}{2}}$ |

| Fractional Indices with Negative Powers                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>For examples</u> :                                                                                                                                                                             |
| (a) $(2^3)^{-\frac{2}{3}} = 2^{3 \times -\frac{2}{3}} = 2^{-2} = \frac{1}{2^2} = \frac{1}{4}$ .                                                                                                   |
| (b) $(4^{-2})^{\frac{3}{2}} = 4^{-2 \times \frac{3}{2}} = 4^{-3} = \frac{1}{4^3} = \frac{1}{64}.$                                                                                                 |
| (c) $\left(1\frac{11}{25}\right)^{-\frac{1}{2}} = \left(\frac{36}{25}\right)^{-\frac{1}{2}} = \left(\frac{25}{36}\right)^{\frac{1}{2}} = \frac{25^{\frac{1}{2}}}{36^{\frac{1}{2}}} = \frac{5}{6}$ |

Exercise 2.8: Evaluate

| (a) $(3^3)^{-\frac{2}{3}}$   | (b) $(2^5)^{-\frac{2}{5}}$                     | (c) $(7^2)^{-\frac{1}{2}}$                       |
|------------------------------|------------------------------------------------|--------------------------------------------------|
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
| (d) $(8^3)^{-\frac{1}{3}}$   | (e) $(4^5)^{-\frac{3}{5}}$                     | (f) $(5^{-6})^{\frac{1}{2}}$                     |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
| (g) $(6^{-3})^{\frac{2}{3}}$ | (h) $\left(1\frac{7}{9}\right)^{-\frac{1}{2}}$ | (i) $\left(2\frac{10}{27}\right)^{-\frac{1}{3}}$ |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
|                              |                                                |                                                  |
| (g) $(6^{-3})^{\frac{2}{3}}$ | (h) $\left(1\frac{7}{9}\right)^{-\frac{1}{2}}$ | (i) $\left(2\frac{10}{27}\right)^{-\frac{1}{3}}$ |

A <u>square number</u>, also known as a *perfect square*, is an integer that can be expressed as the square of another integer. For example, 16 is a square number because it can be written as  $4^2$ , where 4 is also an integer.

The <u>square root</u> of a number, on the other hand, is a value that, when multiplied by itself, gives the original number. For instance, the square root of 25 is 5 because  $5 \times 5 = 25$ . Square roots can be calculated for any *non-negative number*, not just perfect squares. If a number is not a perfect square, its square root will typically be an <u>irrational number</u> (*a number that cannot be expressed*)

*as a simple fraction*). The symbol  $\sqrt{\phantom{a}}$  is used to denote the square root.

The square root in index form

The square of any positive number x can be written as  $\sqrt{x}$  or  $x^{\frac{1}{2}}$ . So  $\sqrt{x} = x^{\frac{1}{2}}$ . *For examples*: Find the square root of

| (a) 9                                              | (b) 64                                               |
|----------------------------------------------------|------------------------------------------------------|
| Solution:                                          | Solution:                                            |
| Method 1:-                                         | Method 1:-                                           |
| $\sqrt{9} = \sqrt{3 \times 3} = 3$                 | $\sqrt{64} = \sqrt{8 \times 8} = 8$                  |
| Method 2:-                                         | Method 2:-                                           |
| $\sqrt{9} = 9^{\frac{1}{2}} = (3^2)^{\frac{1}{2}}$ | $\sqrt{64} = 64^{\frac{1}{2}} = (8^2)^{\frac{1}{2}}$ |
| $= 3^{2 \times \frac{1}{2}}$                       | $= 8^{2 \times \frac{1}{2}}$                         |
| = 3                                                | = 8                                                  |

Exercise 2.9: Find the square root of

| (a) 1   | (b) 4   | (c) 16  |
|---------|---------|---------|
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
| (d) 36  | (e) 49  | (f) 81  |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
| (g) 100 | (h) 121 | (i) 144 |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |

| Harder Examples using Prin                         | me Factorisation | ::                                                                                     |       |
|----------------------------------------------------|------------------|----------------------------------------------------------------------------------------|-------|
| Find the square root of                            |                  |                                                                                        |       |
| (a) 225                                            |                  | (b) 576                                                                                |       |
| Solution:                                          |                  | Solution:                                                                              |       |
| $\sqrt{225} = \sqrt{3 \times 3 \times 5 \times 5}$ | 3 225            | $\sqrt{576} - \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3}$ | 2 576 |
|                                                    | 3 75             |                                                                                        | 2 288 |
| $=$ 3 $\times$ 5                                   | 5 25             | $= 2 \times 2 \times 2 \times 3$                                                       | 2 144 |
| = 15                                               | 5 5              | = 24                                                                                   | 2 72  |
|                                                    | 1                |                                                                                        | 2 36  |
|                                                    |                  |                                                                                        | 2 18  |
|                                                    |                  |                                                                                        | 3 9   |
|                                                    |                  |                                                                                        | 3 3   |
|                                                    |                  |                                                                                        | 1     |

| Evercise 2 10                         | Using prim | - factorisation | to find the so | mare root of  |
|---------------------------------------|------------|-----------------|----------------|---------------|
| $\underline{\text{Littlise } 2.10}$ . | Osing prim |                 | to find the st | juare 1001 01 |

| (a) 256 | (b) 324 | (c) 400 |
|---------|---------|---------|
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
|         |         |         |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |
| (d) 484 | (e) 676 | (f) 784 |

| Exercise 2.11: Using prime factorisation to find the square root of |
|---------------------------------------------------------------------|
|---------------------------------------------------------------------|

| (a) 900  | (b) 1764 | (c) 2304   |
|----------|----------|------------|
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
| (d) 3136 | (e) 3600 | (f) 4096   |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
| (g) 5194 | (b) 6400 | (j) 10 000 |
| (g) 5104 |          | (1) 10 000 |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |
|          |          |            |